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Abstract. Like other lubricants, oils play a crucial role in providing the space needed to separate 

moving parts. In addition, the lubricants ensure the suspension and transport of contaminants, 

neutralize corrosive acids, protect surfaces likely to wear, ensure heat dissipation, and provide 

the performance and increasing performance characteristics of industrial equipment and beyond. 

During use, lubricating oils undergo several chemical transformations due to oxidation at high 

temperatures (regime temperatures) due to degradation and contamination, water, ethylene 

glycol, coolants, waste residues. Finally, oils reach a lifetime due to a wide variety of degradation 

mechanisms, which lead to increased oxidation and nitration, base depletion, acid build-up, water 

contamination, cooling fluids, and viscosity changes. The rather complex nature of lubricants, 

along with the distinct variety of industrial equipment, especially the latest generation, equipped 

with high-performance techniques and artificial intelligence, make it very difficult, if not 

impossible, to predict all possibilities of generating defects. This study was intended to show 

how to expect action-time series data using Artificial Intelligence techniques on a set of data 

collected using direct/ indirect sensors and computational determinations based on empirical 

relationships. The algorithm Principal Components Analysis (PCA) has been approached to 

predict the values of the next steps of any sequence by support vector machines (SVM) models. 

The PCA approach was considered a favourable experiment. The answers obtained characterize 

and equate the training sequences with values changed by a step of the time. This means that the 

data structure learns to predict the next step's output value at each stage of the input sequence.  

1.  Introduction 

Typically, an oil change is based on criteria, often based on empirical determinations, calculations that 

refer to hours of operation, etc. Based on sound analysis, there are fewer criteria based on chemical 

composition and existing lubricants resulting from tests or online records. Generally, oils are tested in 

specialized laboratories, the tests mainly being time-consuming and energy-intensive. Due to the tests 

often performed by laboratories, and operations have, for this reason, disadvantages related to the date 

of acquisition instantaneity, only basic degradation features coverage. Therefore, using laboratory tests 

to monitor the condition of oils is not a practical solution, nor is it generally applicable. It is the time 

factor that requires that oil state analyses be almost simultaneous, if not concurrent with sampling time. 

Only in this way do oil analyses reflect the equipment's actual condition. 

Electrochemical analytical techniques (electrochemical impedance spectroscopy (EIS), micro 

acoustic viscosity), chemical (pH measurement, thin-film contaminant monitor), physical (the kinematic 
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viscosity, ultrasonic techniques, thermo-conductivity, ferrography, optical (optical absorption), and 

other types of analysis, especially those combining different kinds of scenarios, are best suited for data 

collection using high-performance sensors, [1]. 

2.  Experimental setup 

The experiment was conducted in several phases, being part of a Research Program supported by private 

companies from Romania and Italy, in collaboration with researchers and academics staff, [1], [2], [3]. 

The data set was collected for six months, continuously validating the data in several 258646 instances 

for 19 operating parameters. A first test phase of an experimental model took place at a private Italian 

company on a simulated demo system in the company's lab.  

The tested elements (i.e., physicochemical parameters) were evaluated in the first stage on a single 

level. As data was collected, based on predefined scenarios, "event/ error modules" were interleaved at 

a higher level to test the system's response speed [3]. All the data was then processed and interpolated. 

At that time, the "Artificial Intelligence" contribution became essential to evaluate the infinitesimal 

transformations (those that can escape the vigilance of a human operator) of multiparametric elements. 

The system has been tested to detect between the "n" elements that need to be considered simultaneously 

and to evaluate in real-time the evolution and trend of the monitored parameters, being "taught" to detect 

singularities, outliers, essential anomalies, or possible failures, [19].  

Data processing and computational work have yielded positive results to obtain the necessary data 

points for advancement in effectively monitoring a correctly identified mechanical system. The 

overcoming of this early phase has allowed the decision to install the hydraulic system containing sensor 

sets and transducers designed and physically established in industrial installations (called pilot systems) 

at a private company in Romania, as well as in four other locations in Italy, to partners of the Research 

Program, named above, [1], [2], [3]. 

The data set contains 19 parameters, not all independent, whose values have been collected over six 

months or determined empirically. From this set, the data collected for three status parameters (which 

determines the degree of degradation of the lubricating oil) and a bunch of values corresponding to the 

collection of target values were selected, the latter being used as a comparison element, training, 

learning, testing, and validation, respectively. The number of time steps is estimated at 258646 items. 

Outliers detection techniques have replaced missing or erroneous values by comparison with the closest 

mean value set. The values with which these abnormalities have been replaced complies with the 

condition that they are interpolated linearly over a strictly determined range in the valid set of values. 

This experiment uses the data set collected within the Romanian National Program PN II project, 

ERA MANUNET: NR 13081221. These experiment models and analyzes at the same time the behaviour 

of a mechanical system, studying its behaviour based on data collected from applied sensors the 

hydraulic system of automatic machine lubrication. Computational determinations have been made for 

a small set of parameters to estimate the degradation state of the lubricating oil (A, B, C), respectively, 

for the complete set of data (are used all nineteen independent parameters, or not, collected during the 

experiment). The latter analysis required an excessive computational effort in the necessary resources, 

involving parallel computing techniques on an i7 computer with eight kernels. For this approach, it was 

also necessary to process the data provided by the last data column, which contains calculated estimates 

of the qualitative degradation of the oil (empirical determination, [4-11]) so that the data column reflects 

the correct classification of the qualitative estimates as well as the values collected from the system 

sensors for the other parameters of the lubricating oil. In this sense, the last data column in the data set 

matrix contains binary values (0 and 1) for the two possible states of the oil in the plant: the logical value 

"1" corresponds to a degraded oil and needs to be changed, respectively the logical value "0", represents 

a suitable quality oil, and can be used in the lubrication system. The data set is partitioned as follows: 

70% of the data volume will be used for artificial network training, and 15% of the collected data set is 

used for network testing, and 15% of the dataset is used to validate the results. The working procedure 

states that the response values of the system are the network training data sequence. Carefully prevent 

situations of divergence of the forecast; it will be necessary to standardize the training data are so 



 

 

 

 

 

 

organized that it has zero mean and unit variance. Also, the data set used for the test will be standardized 

in the same way as the training data. The long-term memory (LSTM) regression network was used, 

which has been specified to have an architecture of 10 hidden units and train for 100 epochs. This will 

prevent the gradients from exploding the gradient threshold. The initial learning rate was defined to 

0.005 and provided to drop the learning rate after 25 epochs multiplied by a factor of 0.2. The network 

is initialized when the predictive training data is made. Next should be the first prediction using the last 

time step of the training response. The network function will be helpful when the forecast and outputs 

of the network are updated sequentially using predicted data. The training phase is monitored 

permanently by the calculated root-mean-square error (RMSE), which measures errors induced by the 

network. This was the preparatory stage of the work 

3.  Principal Components Analysis algorithm and application 

The Principal Components Analysis (PCA) is a very commonly used method of extracting statistical 

features [4], [12-16]. Fortunately, in variable data sets, varying groups evolve concurrently. An 

explanation for this would be that several variables could follow the same evolutionary principle that 

governs the behaviour of a mechanical system. There are only a few such driving forces in technical 

systems, but plenty of instrumentation allows one to measure dozens of system variables. When this 

happens, the immediate danger would be to create a redundancy of information. In this instance, the 

subject appears hard to be solved because of the surplus of information. Still, it can be simplified by 

replacing the variable set with a new set of variables, generally smaller in number and size. Thus, 

considering a collection of measured data (a matrix with m lines and n columns), 𝑿𝒎𝒙𝒏, where each 

column is a single sample (or an instance) of the data set (ie �⃗⃗� ), and either 𝒀𝒌𝒙𝒏 another matrix, which 

is a linear transformation P of the first matrix. In conclusion, X is the original set of recorded data, and 

Y is a re-representation of this dataset. Then, expressing the change of the base X, with the 

transformation P, in Y, results [4], [13-18]: 

 

P*X=Y                                                                     (1) 

 

where P is a matrix with k-rows and m columns, 𝑷𝒌𝒙𝒎And the elements of this matrix (the vectors 

𝒑𝟏, 𝒑𝟐, … , 𝒑𝒎) are the set of vectors in the new base. Thus, by applying the transformation matrix P to 

the matrix X, then the matrix Y is formally obtained: 
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alternatively, in a more simplified form: 
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It should remark that each coefficient of 𝒚𝒊 is a dot product of 𝒙𝒊 with the corresponding row in P: 
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In other words, the coefficient of jth of yi is a projection on the jth line of the matrix P. The matrix P rows 

are a new vector base indeed for representing the columns of X. Hence, the elements of Y are linear 

combinations of those vectors. This is why the PCA is a method that projects a set of data into a new 

coordinate system by determining its eigenvectors and eigen-matrix values. This involves calculating a 

covariance matrix of a data set to minimize redundancy and maximize the variance. Mathematically, the 

PCA is defined as a linear orthogonal transformation and assumes that all the base vectors are an 

orthogonal matrix [4], [13], [16], [17]. Therefore, the PCA is targeted towards finding variations and 

coefficients of a data set by computing and determining its eigenvalues and eigenvectors of the 

covariance matrix. The PCA is calculated by determining the eigenvectors and the eigenvalues of the 

covariance matrix. The covariance matrix evaluates how much each dimension differs from the relative 

median reported to the differences between them. The covariance of two random variables (dimensions) 

represents their tendency to vary together: 

 
         cov X,  Y   E E X   X  · E E Y   Y     (5) 

 

where 𝑬[𝑿] moreover, 𝑬[𝒀] are (expected) values of X and Y, respectively. 

For a sample of values 
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�̅� and �̅� is the means of X and Y, respectively. 

Equation (1), from a geometric point of view, represents rotation and stretch, which transforms X 

into Y. 

The first principal component is a single axis in space. When the projection is constructed, each 

observation on that axis, then the resulting values form a new variable. The variation of this variable is 

the maximum of all possible options of the first axis. 

The second principal component is another axis in space, perpendicular to the first one. The 

projection of the observations on this axis generates a new variable. The variance of this variable is the 

maximum of all possible options of this second axis. The complete set of principal components is as 

large as the original set of variables. However, the sum of variations in the first few principal components 

is usually expected to exceed 80% of the total variance of the original data. 

In MATLAB®, owned by The MathWorks Inc., one may use the pca MATLAB function to find the 

principal components. To use the pca, the measured data one wants to analyze should be matrix 

organized. For example, suppose you do not have the actual data, but you have a sample for which you 

know the correlation matrix or the data covariance matrix. In that case, you can use the pcacov 

MATLAB function to perform a principal component analysis.  

A very intuitive method for calculations and PCA visualization is presented in detail [16], [17]. In 

addition, the authors have implemented an interactive PCA view, and a text viewer called Text Variation 

Explorer is developed. It allows the user to interactively study the outcome of the PCA and provides a 

better understanding of the process. 

An exciting and practically experienced perspective in exploring medical data is presented in [18], 

[19]. Since the primary purpose of the PCA is to extract new uncorrelated characteristics, it is logical to 

introduce a correlation-based criterion with the possibility of defining a threshold value. Such a criterion 

is Kaiser-Meyer-Olkin (KMO), a benchmark that explains both the total correlation and the partial 

correlation: 
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in which: (i ) ( j)
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  is a partial correlation coefficient for 𝒙(𝒊) and 𝒙(𝒋) without considering the 

effect of all of the other variables, and the characteristic 𝑿(𝒊,𝒋) is fixed and 𝑹𝒌𝒍 is the algebraic 

complement for 𝒓𝒌𝒍 from the determinant of the correlation matrix R. It is easy to note that if two 

characteristics have a common correlation factor with other characteristics, it results that partial 

correlation 𝒂𝒊𝒋, is small, indicating a corresponding variation. Thus, if 𝒂𝒊𝒋 approaches zero, then KMO 

approaches the unit value, while if 𝒂𝒊𝒋  approaches the unit value (indicating that the variables do not 

have a common correlation factor) then KMO approaches zero value. The author recommends using 

PCA if KMO> 0.5. 

Since the experiment results contain data on many variables (19 parameters), it was chosen to 

evaluate these data using the Principal Components Analysis model, being retained for the study of three 

principal components in a 3D graphic representation. The names and meaning of the symbols of the 

collected parameters are further presented for this analysis in the Classification Learning approach and 

the Artificial Intelligence techniques of this paper Table 1: 

 

Table 1- Parameters' definitions and symbols' significance 

Crt. nr. Parameter Symbol  Significance of parameters 

1 icm_rh  Relative humidity of the oil (%) 

2 icm_flow  Oil flow (ml/min) 

3 icm_temp  Temperature of the sensor (oC) 

4 icm_iso4  Disaggregated ISO Cleanliness Code 

4406:1999 

5 icm_iso6  Disaggregated ISO Cleanliness Code 

4406:1999 

6 icm_iso14  Disaggregated ISO Cleanliness Code 

4406:1999 

7 icm_pc4  Particle counter 4µ 

8 icm_pc6  Particle counter 6µ 

9 icm_pc14  Particle counter 14µ 

10 fps_vcst  Kinematic viscosity (cSt) 

11 fps_v  Dynamic viscosity (cPoise) 

12 fps_density  Density (g/cm3) 

13 fps_dielectric  Dielectric 

14 fps_temp  Oil temperature (oC) 

15 oh_temp  The temperature of the sensor (oC) 

16 oh_parama  Param A used for oil degradation calculation 

17 oh_paramb  Param B used for oil degradation calculation 

18 oh_paramc  Param C used for oil degradation calculation 

19 oh_od  Oil degradation 

 
Figure 1 shows the relative distribution of sensor data collected or analytically determined: 

 



 

 

 

 

 

 

 
Figure 1- The distribution of the" AllOilParametersMonitor" data file 

 

The Principal Components are represented bi-dimensionally in figure 2, also in this figure are 

indexed, several outliers, using the interactive features of digital graphical interfaces. Thus, you can 

easily see the contour of the data volume on two main components and the "scattered" set of independent 

data (outliers) in the isolated, but concentrated, area of the principal components. 

 

 
Figure 2- The Principal Components plot, with outliers outstanding 

 

In figure 2, it can be easy to observe the volume of data falling within the "abnormalities" or "outliers" 

category, data to be eliminated, or for which special conditions should be imposed when processing the 

results. 

The two-dimensional approach of the Principal Components, for all variables, offers the possibility 

of processing the data with the appropriate tools for the study, figure 3. It can be seen from figure 3 that 

the collected data is grouped quite uniformly over a relatively narrow area and that some parameters 

have distributed values in well-defined ranges. Anomalies being concentrated in isolated areas allow 

conclusions about the occurrence of anomalies and confirm the existence of "outliers" values. 



 

 

 

 

 

 

 
Figure 3- The two Principal Components plot, with all 19 parameters outstanding 

 

Highlighting outliers is particularly well worth the 3D Graphic representation of Principal 

Components, using as bases the three main components, analytically determined, figure 4. 

 

 
Figure 4-Three Principal Components, 3D plot representation 

 

The variance of the three Principal Components is graphically displayed in figure 5. Again, 

observation is required: the figure puts into perspective the variance of the first ten components, which 

fall within the 95% threshold of the total variation. It is to be noticed that the first principal component, 

the most important one, represents a variance of almost 40%, the other components having much more 

comparable weights, their variance being almost insignificant, the first three components covering two-

thirds of the total variance. This is why we can make the decision dimensionally reduced components, 

that is, consider only three of them, most obviously critical. 

 



 

 

 

 

 

 

 
Figure 5- The amount of variance accounted for each component 

 

4.  Conclusions 

Condition monitoring and diagnosis and predicting the estimation of some output parameters for a 

technical system, respectively, can be framed in the "extrapolation" chapter as a mathematical 

evaluation, testing, and validation operation [13], [15]. Doubtless, the time series for which 

mathematical operations of this kind can be applied are subject to errors due to the statistical nature of 

these mathematical classes. Therefore, a prediction is understood as an estimate of the values of a time 

function, based on values of a time series, values that can be, or can not be, affected by random errors. 

Thus, for example, a prediction problem could be expressed as follows: Given a series of time, S (t), 

which consists of a set of values, and a random set of disturbing signals assimilated to a set of noise, 

Z(t), it is proposed to estimate a future value, a prediction, therefore, P(t+), where  is a positive 

constant, the forecast is also a continuous function of time. 

The success of a classification system depends significantly on the effectiveness of the extracted 

observation sequence to represent a particular condition or condition of the machine. Therefore, 

significant efforts have been made in research works, developing various techniques for extracting 

features and monitoring the machinery and installations. Characteristics extraction algorithms can be 

grouped, according to the basic methods used, into three main categories: the Principal Components 

Analysis, which is based on the identification of the axes on which data is most variable, the learning 

approach (Neural Networks, Pattern Classification, which have the advantages of superior learning, 

noise suppression, and parallel computational skills) and signal processing (Fourier transform, Hidden 

Markov Models or wavelet, which allow the classification based on modulus maxima distribution). 

The Principal Components Analysis is a rigorous quantitative mathematical procedure for making 

such a simplification. The PCA is a stable and efficient method for finding an algorithm for structuring 

a multidimensional data set. The PCA is based on orthogonal transformations that convert a group of 

multidimensional values into linear-uncorrelated variables, called core components. The main 

disadvantage of the PCA approach is that the procedure and the outcome are often challenging to 

understand. The link between input and output can be confusing, a slight change of inputs can generate 

an utterly different result, and the user can often ask if the PCA does the right thing. The PCA generates 

a new set of variables, called main components, and each principal component is a linear combination 

of the initial variables. The fundamental property of these main components is that they are orthogonal, 

so there is no redundant information. The quantifiable results of this algorithm are that all the main 

components as a whole form an orthogonal basis for the data space.  
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